A constant light-genetic screen identifies KISMET as a regulator of circadian photoresponses

36Citations
Citations of this article
56Readers
Mendeley users who have this article in their library.

Abstract

Circadian pacemakers are essential to synchronize animal physiology and behavior with the day:night cycle. They are selfsustained, but the phase of their oscillations is determined by environmental cues, particularly light intensity and temperature cycles. In Drosophila, light is primarily detected by a dedicated blue-light photoreceptor: CRYPTOCHROME (CRY). Upon light activation, CRY binds to the pacemaker protein TIMELESS (TIM) and triggers its proteasomal degradation, thus resetting the circadian pacemaker. To understand further the CRY input pathway, we conducted a misexpression screen under constant light based on the observation that flies with a disruption in the CRY input pathway remain robustly rhythmic instead of becoming behaviorally arrhythmic. We report the identification of more than 20 potential regulators of CRY-dependent light responses. We demonstrate that one of them, the chromatin-remodeling enzyme KISMET (KIS), is necessary for normal circadian photoresponses, but does not affect the circadian pacemaker. KIS genetically interacts with CRY and functions in PDF-negative circadian neurons, which play an important role in circadian light responses. It also affects daily CRY-dependent TIM oscillations in a peripheral tissue: the eyes. We therefore conclude that KIS is a key transcriptional regulator of genes that function in the CRY signaling cascade, and thus it plays an important role in the synchronization of circadian rhythms with the day:night cycle. © 2009 Dubruille et al.

Cite

CITATION STYLE

APA

Dubruille, R. L., Murad, A., Rosbash, M., & Emery, P. (2009). A constant light-genetic screen identifies KISMET as a regulator of circadian photoresponses. PLoS Genetics, 5(12). https://doi.org/10.1371/journal.pgen.1000787

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free