Continuous Approximation for Demand Balancing in Solving Large-scale One-commodity Pickup and Delivery Problems

1Citations
Citations of this article
30Readers
Mendeley users who have this article in their library.

Abstract

The one-commodity pickup and delivery problem (1-PDP) has a wide range of applications in the real world, e.g., for repositioning bikes in large cities to guarantee the sustainable operations of bike-sharing systems. It remains a challenge, however, to solve the problem for large-scale instances. This paper proposes a hybrid modeling framework for 1-PDP, where a continuum approximation (CA) approach is used to model internal pickup and delivery routing within each of multiple subregions, while matching of net surplus or deficit of the commodity out of these subregions is addressed in a discrete model with a reduced problem size. The interdependent local routing and system-level matching decisions are made simultaneously, and a Lagrangian relaxation based algorithm is developed to solve the hybrid model. A series of numerical experiments are conducted to show that the hybrid model is able to produce a good solution for large-scale instances in a short computation time.

Cite

CITATION STYLE

APA

Lei, C., & Ouyang, Y. (2018). Continuous Approximation for Demand Balancing in Solving Large-scale One-commodity Pickup and Delivery Problems. Transportation Research Part B: Methodological, 109, 90–109. https://doi.org/10.1016/j.trb.2018.01.009

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free