A cross structured light sensor and stripe segmentation method for visual tracking of a wall climbing robot

5Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

Abstract

In non-destructive testing (NDT) of metal welds, weld line tracking is usually performed outdoors, where the structured light sources are always disturbed by various noises, such as sunlight, shadows, and reflections from the weld line surface. In this paper, we design a cross structured light (CSL) to detect the weld line and propose a robust laser stripe segmentation algorithm to overcome the noises in structured light images. An adaptive monochromatic space is applied to preprocess the image with ambient noises. In the monochromatic image, the laser stripe obtained is recovered as a multichannel signal by minimum entropy deconvolution. Lastly, the stripe centre points are extracted from the image. In experiments, the CSL sensor and the proposed algorithm are applied to guide a wall climbing robot inspecting the weld line of a wind power tower. The experimental results show that the CSL sensor can capture the 3D information of the welds with \r<br />high accuracy, and the proposed algorithm contributes to the weld line inspection and the robot navigation.

Cite

CITATION STYLE

APA

Zhang, L., Sun, J., Yin, G., Zhao, J., & Han, Q. (2015). A cross structured light sensor and stripe segmentation method for visual tracking of a wall climbing robot. Sensors (Switzerland), 15(6), 13725–13751. https://doi.org/10.3390/s150613725

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free