Cytosolic replication of group a Streptococcus in human macrophages

48Citations
Citations of this article
40Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

As key components of innate immune defense, macrophages are essential in controlling bacterial pathogens, including group A Streptococcus (GAS). Despite this, only a limited number of studies have analyzed the recovery of GAS from within human neutrophils and macrophages. Here, we determined the intracellular fate of GAS in human macrophages by using several quantitative approaches. In both U937 and primary human macrophages, the appearance over time of long GAS chains revealed that despite GAS-mediated cytotoxicity, replication occurred in viable, propidium iodide-negative macrophages. Whereas the major virulence factor M1 did not contribute to bacterial growth, a GAS mutant strain deficient in streptolysin O (SLO) was impaired for intracellular replication. SLO promoted bacterial escape from the GAS-containing vacuole (GCV) into the macrophage cytosol. Up to half of the cytosolic GAS colocalized with ubiquitin and p62, suggesting that the bacteria were targeted by the autophagy machinery. Despite this, live imaging of U937 macrophages revealed proficient replication of GAS after GCV rupture, indicating that escape from the GCV is important for growth of GAS in macrophages. Our results reveal that GAS can replicate within viable human macrophages, with SLO promoting GCV escape and cytosolic growth, despite the recruitment of autophagy receptors to bacteria.

Cite

CITATION STYLE

APA

O’Neill, A. M., Thurston, T. L. M., & Holden, D. W. (2016). Cytosolic replication of group a Streptococcus in human macrophages. MBio, 7(2). https://doi.org/10.1128/mBio.00020-16

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free