The monitoring of dissolved oxygen is a key parameter in many fields, namely the treatment and monitoring of various cerebral traumas. Leveraging existing manufacturing techniques, electrochemical sensors hold the potential for compact, simple, and scalable dissolved oxygen sensors. Past studies have focused on the general design of such sensors, but a comparative study on the impact of microelectrode geometries for cerebral applications has been forthcoming. We present here the results of a characterization study conducted across solid-state sensors with varying micro-electrode geometries. The electrode structures were covered with a Nafion membrane and included variations of the classic interdigitated microelectrode array in addition to a circular microelectrode array variation. Voltage sweeps were conducted while monitoring the devices’ sensing current responses across a 50.3 mmHg change in dissolved oxygen within a deionized aqueous solution. Half of the devices were identified as ultramicroelectrode designs that presented a greater dependence on electrode spacing and topology. The ultramicroelectrode-style (UME) interdigitated electrode (IDE) topology presented the greatest signal response at 25.24 nA/mmHg, an approximate eight-fold improvement in sensitivity from a non-UME variation with a sensitivity of 2.98 nA/mmHg. The design presented a linear response from 8.3 mmHg to 58.6 mmHg with r2 = 0.9743. The sensitivity improvement was attributed to the ultramicroelectrode structure’s amplifying diffusive feedback, which was enabled by the IDE topology and short electrode spacings.
CITATION STYLE
Bacheschi, D. T., Strittmatter, E. Z., Sawtelle, S., & Nami, M. (2022). Designing Sensitivity: A Comparative Analysis of Microelectrode Topologies for Electrochemical Oxygen Sensing in Biomedical Applications. Micromachines, 13(1). https://doi.org/10.3390/mi13010141
Mendeley helps you to discover research relevant for your work.