m-Tyrosine is an amino acid analogue, exuded from the roots of fescue grasses, which acts as a potent allelopathic and a broad spectrum herbicidal chemical. Although the production and toxic effects of m-tyrosine are known, its microbial degradation has not been documented yet. A soil microcosm study showed efficient degradation of m-tyrosine by the inhabitant microorganisms. A bacterial strain designated SSC5, that was able to utilize m-tyrosine as the sole source of carbon, nitrogen, and energy, was isolated from the soil microcosm and was characterized as Bacillus aquimaris. Analytical methods such as HPLC, GC-MS, and 1H-NMR performed on the resting cell samples identified the formation of 3-hydroxyphenylpyruvate (3-OH-PPA), 3-hydroxyphenylacetate (3-OH-PhAc), and homogentisate (HMG) as major intermediates in the m-tyrosine degradation pathway. Enzymatic assays carried out on cell-free lysates of m-tyrosine-induced cells confirmed transamination reaction as the first step of m-tyrosine degradation. The intermediate 3-OH-PhAc thus obtained was further funneled into the HMG central pathway as revealed by a hydroxylase enzyme assay. Subsequent degradation of HMG occurred by ring cleavage catalyzed by the enzyme homogentisate 1, 2-dioxygenase. This study has significant implications in terms of understanding the environmental fate of m-tyrosine as well as regulation of its phytotoxic effect by soil microorganisms. © 2013 Khan et al.
CITATION STYLE
Khan, F., Kumari, M., & Cameotra, S. S. (2013, October 1). Biodegradation of the Allelopathic Chemical m-Tyrosine by Bacillus aquimaris SSC5 Involves the Homogentisate Central Pathway. PLoS ONE. Public Library of Science. https://doi.org/10.1371/journal.pone.0075928
Mendeley helps you to discover research relevant for your work.