Aims/Introduction: Several cross-sectional studies have shown that delayed heart rate recovery (HRR) after exercise is associated with the development of metabolic syndrome (MetS). However, there has been a lack of comprehensively designed longitudinal studies. Therefore, our aim was to evaluate the longitudinal association of delayed HRR following a graded exercise treadmill test (GTX) with incident MetS. Materials and Methods: This was a retrospective longitudinal cohort study of participants without MetS, diabetes, or cardiovascular diseases. The HRR was calculated as the peak heart rate minus the resting heart rate after a 1 min rest (HRR1), a 2 min rest (HRR2), and a 3 min rest (HRR3). Multivariate Cox proportional hazards analysis was performed to investigate the association between HRR and development of MetS. Results: There were 676 (31.2%) incident cases of MetS identified during the follow-up period (9,683 person-years). The only statistically significant relationship was between HRR3 and the development of MetS. The hazard ratios (HRs) (95% confidence interval [CI]) of incident MetS comparing the first and second tertiles to the third tertile of HRR3 were 1.492 (1.146–1.943) and 1.277 (1.004–1.624) with P = 0.003 after adjustment for multiple risk factors. As a continuous variable, the HR (95% CI) of incident MetS associated with each one-beat decrease in HRR3 was 1.015 (1.005–1.026) with P = 0.004 after full adjustments. An HRR3 value ≤45 beats per minute (bpm) was associated with a higher risk of incident MetS compared with values >45 bpm, with an HR (95% CI) of 1.304 (1.061–1.602) and P = 0.001. Conclusions: The slow phase of HRR, particularly HRR3, might be more sensitive at predicting the risk of MetS.
CITATION STYLE
Yu, T. Y., Hong, W. J., Jin, S. M., Hur, K. Y., Jee, J. H., Bae, J. C., … Lee, M. K. (2022). Delayed heart rate recovery after exercise predicts development of metabolic syndrome: A retrospective cohort study. Journal of Diabetes Investigation, 13(1), 167–176. https://doi.org/10.1111/jdi.13637
Mendeley helps you to discover research relevant for your work.