This study presents a series of structured and adaptive processes aimed at tracking and verifying transactions recorded on the blockchain. Permissioned blockchains are employed across diverse enterprises for various purposes, including data recording, management, the utilization of blockchain services, and authentication. However, the processes of data tracking and transactions incur substantial resource and time expenditure. Furthermore, there is potential for information asymmetry within the blockchain ledger due to data breach attacks. Consequently, we propose a contract structured as a hash chain to mitigate resource and time consumption in the tracking and verification processes by organizing transaction hash values and content in a hash chain format based on cryptography. We generate a hash chain for the recorded transactions along the process line and expedite the tracking and verification process by navigating the relevant hash chain. This approach achieves faster and more accurate tracking procedures compared to conventional transaction tracking processes, simultaneously maintaining data symmetry within the blockchain ledger. We conduct a comparative analysis of a contract-based hash-chain-employing structure and two contracts related to tracking in terms of tracking time, CPU usage, and network traffic, among other metrics. The findings suggest that structuring transaction data in the form of a hash chain significantly enhances the efficiency and integrity of the data-tracking and verification processes. Consequently, in this study, we advocate for the adoption of contracts based on the hash chain format when leveraging the blockchain for tracking and verification purposes across various institutions.
CITATION STYLE
Kim, S., & Kim, D. (2024). Data-Tracking in Blockchain Utilizing Hash Chain: A Study of Structured and Adaptive Process. Symmetry, 16(1). https://doi.org/10.3390/sym16010062
Mendeley helps you to discover research relevant for your work.