Carbon dioxide (CO2) inhalation lowers brain pH and induces anxiety, fear, and panic responses in humans. In mice, CO2 produces freezing and avoidance behavior that has been suggested to depend on the amygdala. However, a recent study in humans with bilateral amygdala lesions revealed that CO2 can trigger fear and panic even in the absence of amygdalae, suggesting the importance of extra-amygdalar brain structures. Because the bed nucleus of the stria terminalis (BNST) contributes to fear- and anxiety-related behaviors and expresses acid-sensing ion channel-1A (ASIC1A), we hypothesized that the BNST plays an important role in CO2-evoked fear-related behaviors in mice. We found that BNST lesions decreased both CO2-evoked freezing and CO2-conditioned place avoidance. In addition, we found that CO2 inhalation caused BNST acidosis and that acidosis was sufficient to depolarize BNST neurons and induce freezing behavior; both responses depended on ASIC1A. Finally, disrupting Asic1a specifically in the BNST reduced CO2-evoked freezing, whereas virus-vector-mediated expression of ASIC1A in the BNST of Asic1a-/- and Asic1a+/+ mice increased CO2-evoked freezing. Together, these findings identify the BNST as an extra-amygdalar fear circuit structure important in CO2-evoked fear-related behavior. © 2014 the authors.
CITATION STYLE
Taugher, R. J., Lu, Y., Wang, Y., Kreple, C. J., Ghobbeh, A., Fan, R., … Wemmie, J. A. (2014). The bed nucleus of the stria terminalis is critical for anxiety-related behavior evoked by CO2 and acidosis. Journal of Neuroscience, 34(31), 10247–10255. https://doi.org/10.1523/JNEUROSCI.1680-14.2014
Mendeley helps you to discover research relevant for your work.