Inhibition of rhythmic neural spiking by noise: The occurrence of a minimum in activity with increasing noise

59Citations
Citations of this article
47Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The effects of noise on neuronal dynamical systems are of much current interest. Here, we investigate noise-induced changes in the rhythmic firing activity of single Hodgkin-Huxley neurons. With additive input current, there is, in the absence of noise, a critical mean value μ=μ c above which sustained periodic firing occurs. With initial conditions as resting values, for a range of values of the mean μ near the critical value, we have found that the firing rate is greatly reduced by noise, even of quite small amplitudes. Furthermore, the firing rate may undergo a pronounced minimum as the noise increases. This behavior has the opposite character to stochastic resonance and coherence resonance. We found that these phenomena occurred even when the initial conditions were chosen randomly or when the noise was switched on at a random time, indicating the robustness of the results. We also examined the effects of conductance-based noise on Hodgkin-Huxley neurons and obtained similar results, leading to the conclusion that the phenomena occur across a wide range of neuronal dynamical systems. Further, these phenomena will occur in diverse applications where a stable limit cycle coexists with a stable focus. © 2009 The Author(s).

Cite

CITATION STYLE

APA

Gutkin, B. S., Jost, J., & Tuckwell, H. C. (2009). Inhibition of rhythmic neural spiking by noise: The occurrence of a minimum in activity with increasing noise. Naturwissenschaften, 96(9), 1091–1097. https://doi.org/10.1007/s00114-009-0570-5

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free