Highly Sensitive MoS2 Photodetectors Enabled with a Dry-Transferred Transparent Carbon Nanotube Electrode

9Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Fabricating electronic and optoelectronic devices by transferring pre-deposited metal electrodes has attracted considerable attention, owing to the improved device performance. However, the pre-deposited metal electrode typically involves complex fabrication procedures. Here, we introduce our facile electrode fabrication process which is free of lithography, lift-off, and reactive ion etching by directly press-transferring a single-walled carbon nanotube (SWCNT) film. We fabricated Schottky diodes for photodetector applications using dry-transferred SWCNT films as the transparent electrode to increase light absorption in photoactive MoS2 channels. The MoS2 flake vertically stacked with an SWCNT electrode can exhibit excellent photodetection performance with a responsivity of ∼2.01 × 103 A/W and a detectivity of ∼3.2 × 1012 Jones. Additionally, we carried out temperature-dependent current-voltage measurement and Fowler-Nordheim (FN) plot analysis to explore the dominant charge transport mechanism. The enhanced photodetection in the vertical configuration is found to be attributed to the FN tunneling and internal photoemission of charge carriers excited from indium tin oxide across the MoS2 layer. Our study provides a novel concept of using a photoactive MoS2 layer as a tunneling layer itself with a dry-transferred transparent SWCNT electrode for high-performance and energy-efficient optoelectronic devices.

Cite

CITATION STYLE

APA

Ding, E. X., Liu, P., Yoon, H. H., Ahmed, F., Du, M., Shafi, A. M., … Lipsanen, H. (2023). Highly Sensitive MoS2 Photodetectors Enabled with a Dry-Transferred Transparent Carbon Nanotube Electrode. ACS Applied Materials and Interfaces, 15(3), 4216–4225. https://doi.org/10.1021/acsami.2c19917

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free