We examined the combinatory antitumor effects of adenoviruses expressing human mda-7/IL-24 gene (Ad-mda-7) and chemotherapeutic agents on nine kinds of human esophageal carcinoma cells. All the carcinoma cells expressed the melanoma differentiation-associated gene-7/interleukin-24 (MDA-7/IL-24) receptor complexes, IL-20R2 and either IL-20R1 or IL-22R1, and were susceptible to Ad-mda-7, whereas fibroblasts were positive only for IL-20R2 gene and resistant to Ad-mda-7-mediated cytotoxicity. Sensitivity of these esophageal carcinoma cells to Ad-mda-7 was however lower than that to Ad expressing the wild-type p53 gene. We thereby investigated a possible combination of Ad-mda-7 and anticancer agents and found that Ad-mda-7 with 5-fluorouracil (5-FU), cisplatin, mitomycin C or etoposide produced greater cytotoxic effects than those by Ad-mda-7 or the agent alone. Half-maximal inhibitory concentration values of the agents in respective cells were decreased by the combination with Ad-mda-7. Cell cycle analyses showed that Ad-mda-7 and 5-FU increased G2/M-phase and S-phase populations, respectively, and the combination augmented sub-G1 populations. Ad-mda-7-treated cells showed cleavages of caspase-8,-9 and-3 and poly (ADP-ribose) polymerase, but the cleavage levels were not different from those of the combination-treated cells. Ad-mda-7 treatments upregulated Akt phosphorylation but suppressed IκB- levels, whereas 5-FU treatments induced phosphorylation of p53 and extracellular signal-regulated protein kinases 1 and 2. Molecular changes caused by the combination were similar to those by Ad-mda-7 treatments, but the Ad-mda-7-mediated upregulation of Akt phosphorylation decreased with the combination. These data collectively suggest that Ad-mda-7 induced apoptosis despite Akt activation and that the combinatory antitumor effects with 5-FU were produced partly by downregulating the Ad-mda-7-induced Akt activation. © 2014 Nature America, Inc.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Ma, G., Kawamura, K., Shan, Y., Okamoto, S., Li, Q., Namba, M., … Tagawa, M. (2014). Combination of adenoviruses expressing melanoma differentiation-associated gene-7 and chemotherapeutic agents produces enhanced cytotoxicity on esophageal carcinoma. Cancer Gene Therapy, 21(1), 31–37. https://doi.org/10.1038/cgt.2013.79