Endogenous ABA alleviates rice ammonium toxicity by reducing ROS and free ammonium via regulation of the SAPK9-bZIP20 pathway

45Citations
Citations of this article
21Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Ammonium (NH4+) is one of the principal nitrogen (N) sources in soils, but is typically toxic already at intermediate concentrations. The phytohormone abscisic acid (ABA) plays a pivotal role in responses to environmental stresses. However, the role of ABA under high-NH4+ stress in rice (Oryza sativa L.) is only marginally understood. Here, we report that elevated NH4+ can significantly accelerate tissue ABA accumulation. Mutants with high (Osaba8ox) and low levels of ABA (Osphs3-1) exhibit elevated tolerance or sensitivity to high-NH4+ stress, respectively. Furthermore, ABA can decrease NH4+-induced oxidative damage and tissue NH4+ accumulation by enhancing antioxidant and glutamine synthetase (GS)/glutamate synthetasae (GOGAT) enzyme activities. Using RNA sequencing and quantitative real-time PCR approaches, we ascertain that two genes, OsSAPK9 and OsbZIP20, are induced both by high NH4+ and by ABA. Our data indicate that OsSAPK9 interacts with OsbZIP20, and can phosphorylate OsbZIP20 and activate its function. When OsSAPK9 or OsbZIP20 are knocked out in rice, ABA-mediated antioxidant and GS/GOGAT activity enhancement under high-NH4+ stress disappear, and the two mutants are more sensitive to high-NH4+ stress compared with their wild types. Taken together, our results suggest that ABA plays a positive role in regulating the OsSAPK9-OsbZIP20 pathway in rice to increase tolerance to high-NH4+ stress.

Cite

CITATION STYLE

APA

Sun, L., Di, D. W., Li, G., Kronzucker, H. J., Wu, X., & Shi, W. (2020). Endogenous ABA alleviates rice ammonium toxicity by reducing ROS and free ammonium via regulation of the SAPK9-bZIP20 pathway. Journal of Experimental Botany, 71(15), 4562–4577. https://doi.org/10.1093/jxb/eraa076

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free