Uncertainty Analysis of the Life-Cycle Greenhouse Gas Emissions and Energy Renewability of Biofuels

  • Malca J
  • Freire F
N/ACitations
Citations of this article
21Readers
Mendeley users who have this article in their library.

Abstract

Biofuels can contribute substantially to energy security and socio-economic development. However, significant disagreement and controversies exist regarding the actual energy and greenhouse gas (GHG) savings of biofuels displacing fossil fuels. A large number of publications that analyze the life-cycle of biofuel systems present varying and sometimes contradictory conclusions, even for the same biofuel type (Farrell et al., 2006; Malça and Freire, 2004, 2006, 2011; Gnansounou et al., 2009; van der Voet et al., 2010; Börjesson and Tufvesson, 2011). Several aspects have been found to affect the calculation of energy and GHG savings, namely land use change issues and modeling assumptions (Gnansounou et al., 2009; Malça and Freire, 2011). Growing concerns in recent years that the production of biofuels might not respect minimum sustainability requirements led to the publication of Directive 2009/28/EC in the European Union (EPC 2009) and the National Renewable Fuel Standard Program in the USA (EPA 2010), imposing for example the attainment of minimum GHG savings compared to fossil fuels displaced. The calculation of life cycle GHG emission savings is subject to significant uncertainty, but current biofuel life-cycle studies do not usually consider uncertainty. Most often, life-cycle assessment (LCA) practitioners build deterministic models to approximate real systems and thus fail to capture the uncertainty inherent in LCA (Lloyd and Ries, 2007). This type of approach results in outcomes that may be erroneously interpreted, or worse, may promote decisions in the wrong direction (Lloyd and Ries, 2007; Plevin, 2010). It is, therefore, important for sound decision support that uncertainty is taken into account in the life-cycle modeling of biofuels. Under this context, this chapter has two main goals: i) to present a robust framework to incorporate uncertainty in the life-cycle modeling of biofuel systems; and ii) to describe the application of this framework to vegetable oil fuel in Europe. In addition, results are compared with conventional (fossil) fuels to evaluate potential savings achieved through displacement. Following this approach, both the overall uncertainty and the relative importance of the different types of uncertainty can be assessed. Moreover, the relevance of addressing uncertainty issues in biofuels life-cycle studies instead of using average deterministic approaches can be evaluated, namely through identification of important aspects that deserve further study to reduce the overall uncertainty of the system. Environmental Impact of Biofuels 180 This chapter is organized in four sections, including this introduction. Section 2 presents the comprehensive framework developed to capture uncertainty in the life-cycle GHG emissions and energy renewability assessment of biofuels, addressing several sources of uncertainty (namely parameter and modeling choices). Section 3 describes and discusses the application of this framework to vegetable oil fuel in Europe. Section 4 draws the conclusions together.

Cite

CITATION STYLE

APA

Malca, J., & Freire, F. (2011). Uncertainty Analysis of the Life-Cycle Greenhouse Gas Emissions and Energy Renewability of Biofuels. In Environmental Impact of Biofuels. InTech. https://doi.org/10.5772/17299

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free