Endothelium-derived nitric oxide (NO) and its precursor L-arginine have been implied to promote angiogenesis, but little is known about the precise mechanism. The inhibition of endogenous NO formation by N(ω)-nitro-L- arginine methyl ester (L-NAME) (1 mmol/L) but not its inactive enantiomer D- NAME (1 mmol/L) inhibited endothelial cell sprouting from the scratched edge of the cultured bovine aortic endothelial cell monolayer. Inhibition of endogenous NO release by L-NAME was confirmed by amperometric measurement using an NO-specific electrode. In the modified Boyden chamber, L-NAME (1 mmol/L) significantly inhibited endothelial cell migration, whereas L-NAME did not affect endothelial DNA synthesis as assessed by analysis of [3H]thymidine incorporation. We then examined alteration of endothelial cell adhesion molecule expression after the inhibition of NO by L-NAME in cultured human umbilical vein endothelial cells. In both normoxic and hypoxic conditions, L-NAME (1 mmol/L) inhibited surface expression of integrin αvβ3, which is an important integrin facilitating endothelial cell survival and angiogenesis. However, L-NAME did not affect the expression of platelet endothelial cell adhesion molecule-1, intercellular adhesion molecule-1, vascular endothelial adhesion molecule-1, gap junction protein connexin 43, and VE-cadherin, which have been reported to potentially affect angiogenesis. In summary, inhibition of endothelial NO synthase by L-NAME attenuated endothelial cell migration but not proliferation in vitro. Furthermore, endogenous endothelium-derived NO maintains the functional expression of integrin αvβ3, a mediator for endothelial migration, survival, and angiogenesis. Endothelium-derived NO, thus, may play an important role in mediating angiogenesis by supporting endothelial cell migration, at least partly, via an integrin-dependent mechanism.
CITATION STYLE
Murohara, T., Witzenbichler, B., Spyridopoulos, I., Asahara, T., Ding, B., Sullivan, A., … Isner, J. M. (1999). Role of endothelial nitric oxide synthase in endothelial cell migration. Arteriosclerosis, Thrombosis, and Vascular Biology, 19(5), 1156–1161. https://doi.org/10.1161/01.ATV.19.5.1156
Mendeley helps you to discover research relevant for your work.