Broadband absorption enhancement in plasmonic nanoshells-based ultrathin microcrystalline-Si solar cells

44Citations
Citations of this article
51Readers
Mendeley users who have this article in their library.

Abstract

With the objective to conceive a plasmonic solar cell with enhanced photocurrent, we investigate the role of plasmonic nanoshells, embedded within a ultrathin microcrystalline silicon solar cell, in enhancing broadband light trapping capability of the cell and, at the same time, to reduce the parasitic loss. The thickness of the considered microcrystalline silicon (μc-Si) layer is only ∼1/6 of conventional μc-Si based solar cells while the plasmonic nanoshells are formed by a combination of silica and gold, respectively core and shell. We analyze the cell optical response by varying both the geometrical and optical parameters of the overall device. In particular, the nanoshells core radius and metal thickness, the periodicity, the incident angle of the solar radiation and its wavelength are varied in the widest meaningful ranges. We further explain the reason for the absorption enhancement by calculating the electric field distribution associated to resonances of the device. We argue that both Fabry-Pérot-like and localized plasmon modes play an important role in this regard.

Cite

CITATION STYLE

APA

Raja, W., Bozzola, A., Zilio, P., Miele, E., Panaro, S., Wang, H., … Zaccaria, R. P. (2016). Broadband absorption enhancement in plasmonic nanoshells-based ultrathin microcrystalline-Si solar cells. Scientific Reports, 6. https://doi.org/10.1038/srep24539

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free