Melanoma is a common type of cutaneous tumor, but current drug treatments do not satisfy clinical prac- tice requirements. At present, mitochondrial uncoupling is an effective antitumor treatment. Triclosan, a common antimicrobial, also acts as a mitochondrial uncoupler. The aims of the present study were to investigate the effects of triclosan on melanoma cells and the underlying mechanisms. Mitochondrial membrane potential (MMP), mitochon- drial morphology, mitochondrial reactive oxygen species (mito-ROS), intracellular superoxide anion and [Ca2+]i were measured using confocal microscopy. It was found that triclosan application was associated with decreased A375 cell viability in a dose- and time-dependent manner and these effects may have cell specificity. Furthermore, triclosan induced MMP depolarization, ATP content decrease, mito-ROS and [Ca2+]ilevel increases, excessive mitochondrial fission, AMP-activated protein kinase (AMPK) activation and STAT3 inhibition. Moreover, these aforementioned effects were reversed by acetylcysteine treatment. Triclosan acute treatment also induced mitochondrial swelling, which was reversed after AMPK-knockdown associated with [Ca2+]i overload. Cell death was caused by STAT3 inhibi- tion but not AMPK activation. Moreover, triclosan induced autophagy via the ROS/AMPK/p62/microtubule-associated protein 1A/1B-light chain 3 (LC3) signaling pathway, which may serve a role in feedback protection. Collectively, the present results suggested that triclosan increased mito-ROS production in melanoma cells, following induced cell death via the STAT3/Bcl-2 pathway and autophagy via the AMPK/p62/LC3 pathway.
CITATION STYLE
Jin, J., Chen, N., Pan, H., Xie, W., Xu, H., Lei, S., … Gao, J. (2020). Triclosan induces ros-dependent cell death and autophagy in a375 melanoma cells. Oncology Letters, 20(4). https://doi.org/10.3892/ol.2020.11934
Mendeley helps you to discover research relevant for your work.