Mapping and interpretation of Sinlap crater on Titan using Cassini VIMS and RADAR data

59Citations
Citations of this article
28Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Only a few impact craters have been unambiguously detected on Titan by the Cassini-Huygens mission. Among these, Sinlap is the only one that has been observed both by the RADAR and VIMS instruments. This paper describes observations at centimeter and infrared wavelengths which provide complementary information about the composition, topography, and surface roughness. Several units appear in VIMS false color composites of band ratios in the Sinlap area, suggesting compositional heterogeneities. A bright pixel possibly related to a central peak does not show significant spectral variations, indicating either that the impact site was vertically homogeneous, or that this area has been recovered by homogeneous deposits. Both VIMS ratio images and dielectric constant measurements suggest the presence of an area enriched in water ice around the main ejecta blanket. Since the Ku-band SAR may see subsurface structures at the meter scale, the difference between infrared and SAR observations can be explained by the presence of a thin layer transparent to the radar. An analogy with terrestrial craters in Libya supports this interpretation. Finally, a tentative model describes the geological history of this area prior, during, and after the impact. It involves mainly the creation of ballistic ejecta and an expanding plume of vapor triggered by the impact, followed by the redeposition of icy spherules recondensed from this vapor plume blown downwind. Subsequent evolution is then driven by erosional processes and aeolian deposition. Copyright 2008 by the American Geophysical Union.

Cite

CITATION STYLE

APA

Le Mouélic, S., Paillou, P., Janssen, M. A., Barnes, J. W., Rodriguez, S., Sotin, C., … Wall, S. (2008). Mapping and interpretation of Sinlap crater on Titan using Cassini VIMS and RADAR data. Journal of Geophysical Research: Planets, 113(4). https://doi.org/10.1029/2007JE002965

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free