A strategic approach is urgently needed to curb the growing global epidemic of diabetes. In this study, we investigated the effects and mechanisms of salsalate (SAL), an anti-inflammatory drug with anti-diabetic properties, assessing its potential to prevent diabetes in Otsuka Long-Evans Tokushima Fatty rats (OLETF). All animals in our placebo group developed diabetes, whereas none in the SAL test group did so, and only 25% of SAL-treated rats displayed impaired glucose tolerance (IGT). SAL lowered levels of glucagon and raised levels of insulin in plasma, while improving both insulin sensitivity and β-cell function. The protective effect of SAL is likely due to diminished β-cell dedifferentiation, manifested as relative declines in Neurogenin 3+/insulin– cells and synaptophysin+/islet hormone– cells and increased expression of β-cell-specific transcription factor Foxo1. Both Notch1-siRNA and N-[N-(3,5-difluorophenacetyl)-1-alanyl]-S-phenylglycine t-butyl ester (DAPT; an indirect inhibitor of the Notch1 pathway) were shown to prevent β-cell dedifferentiation. Similar to DAPT, SAL effectively reduced β-cell dedifferentiation, significantly suppressing Notch1 pathway activation in INS-1 cells. The inhibitory role of SAL in β-cell dedifferentiation may thus be attributable to Notch1 pathway suppression.
CITATION STYLE
Han, F., Li, X., Yang, J., Liu, H., Zhang, Y., Yang, X., … Chang, B. (2019). Salsalate prevents β-cell dedifferentiation in OLETF rats with type 2 diabetes through NOTch1 pathway. Aging and Disease, 10(4), 719–730. https://doi.org/10.14336/AD.2018.1221
Mendeley helps you to discover research relevant for your work.