Multiagent task allocation in social networks

73Citations
Citations of this article
65Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

This paper proposes a new variant of the task allocation problem, where the agents are connected in a social network and tasks arrive at the agents distributed over the network. We show that the complexity of this problem remains NP-complete. Moreover, it is not approximable within some factor. In contrast to this, we develop an efficient greedy algorithm for this problem. Our algorithm is completely distributed, and it assumes that agents have only local knowledge about tasks and resources. We conduct a broad set of experiments to evaluate the performance and scalability of the proposed algorithm in terms of solution quality and computation time. Three different types of networks, namely small-world, random and scale-free networks, are used to represent various social relationships among agents in realistic applications. The results demonstrate that our algorithm works well and also that it scales well to large-scale applications. In addition we consider the same problem in a setting where the agents holding the resources are self-interested. For this, we show how the optimal algorithm can be used to incentivize these agents to be truthful. However, the efficient greedy algorithm cannot be used in a truthful mechanism, therefore an alternative, cluster-based algorithm is proposed and evaluated. © 2011 The Author(s).

Cite

CITATION STYLE

APA

de Weerdt, M. M., Zhang, Y., & Klos, T. (2012). Multiagent task allocation in social networks. Autonomous Agents and Multi-Agent Systems, 25(1), 46–86. https://doi.org/10.1007/s10458-011-9168-3

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free