Risk stratification of patients with acute myocardial infarction (AMI) is of clinical significance. Although there are many existing risk scores, periodic update is required to reflect contemporary patient profile and management. The present study aims to develop a risk model to predict in-hospital death among contemporary AMI patients as soon as possible after admission. We included 23417 AMI patients from China Acute Myocardial Infarction (CAMI) registry from January 2013 to September 2014 and extracted relevant data. Patients were divided chronologically into a derivation cohort (n = 17563) to establish the multivariable logistic regression model and a validation cohort (n = 5854) to validate the risk score. Sixteen variables were identified as independent predictors of in-hospital death and were used to establish CAMI risk model and score: age, gender, body mass index, systolic blood pressure, heart rate, creatinine level, white blood cell count, serum potassium, serum sodium, ST-segment elevation on ECG, anterior wall involvement, cardiac arrest, Killip classification, medical history of hypertension, medical history of hyperlipidemia and smoking status. Area under curve value of CAMI risk model was 0.83 within the derivation cohort and 0.84 within the validation cohort. We developed and validated a risk score to predict in-hospital death risk among contemporary AMI patients.
CITATION STYLE
Song, C., Fu, R., Dou, K., Yang, J., Xu, H., Gao, X., … Yang, Y. (2018). The CAMI-score: A Novel Tool derived from CAMI Registry to Predict In-hospital Death among Acute Myocardial Infarction Patients. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-26861-z
Mendeley helps you to discover research relevant for your work.