On symmetry of nonnegative solutions of elliptic equations

6Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

Abstract

We consider the Dirichlet problem for a class of fully nonlinear elliptic equations on a bounded domain Ω. We assume that Ω is symmetric about a hyperplane H and convex in the direction perpendicular to H. By a well-known result of Gidas, Ni and Nirenberg and its generalizations, all positive solutions are reflectionally symmetric about H and decreasing away from the hyperplane in the direction orthogonal to H. For nonnegative solutions, this result is not always true. We show that, nonetheless, the symmetry part of the result remains valid for nonnegative solutions: any nonnegative solution u is symmetric about H. Moreover, we prove that if 0, then the nodal set of u divides the domain Ω into a finite number of reflectionally symmetric subdomains in which u has the usual Gidas-Ni-Nirenberg symmetry and monotonicity properties. We also show several examples of nonnegative solutions with a nonempty interior nodal set. © 2011 Elsevier Masson SAS. All rights reserved.

Cite

CITATION STYLE

APA

Poláčik, P. (2012). On symmetry of nonnegative solutions of elliptic equations. Annales de l’Institut Henri Poincare (C) Analyse Non Lineaire, 29(1), 1–19. https://doi.org/10.1016/j.anihpc.2011.03.001

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free