Greedy function approximation: A gradient boosting machine

19.2kCitations
Citations of this article
9.6kReaders
Mendeley users who have this article in their library.

Abstract

Function estimation/approximation is viewed from the perspective of numerical optimization iti function space, rather than parameter space. A connection is made between stagewise additive expansions and steepest-descent minimization. A general gradient descent "boosting" paradigm is developed for additive expansions based on any fitting criterion. Specific algorithms are presented for least-squares, least absolute deviation, and Huber-M loss functions for regression, and multiclass logistic likelihood for classification. Special enhancements are derived for the particular case where the individual additive components are regression trees, and tools for interpreting such "TreeBoost" models are presented. Gradient boosting of regression trees produces competitives highly robust, interpretable procedures for both regression and classification, especially appropriate for mining less than clean data. Connections between this approach and the boosting methods of Freund and Shapire and Friedman, Hastie and Tibshirani are discussed.

Cite

CITATION STYLE

APA

Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5), 1189–1232. https://doi.org/10.1214/aos/1013203451

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free