Surface Roughness Modeling Using Q-Sequence

  • Ullah A
N/ACitations
Citations of this article
13Readers
Mendeley users who have this article in their library.

Abstract

Dynamical systems play a vital role in studying highly non-linear phenomena. One of the families of the dynamical systems is integer sequences. There is an integer sequence called Q-sequence: Q(n) = Q(n − Q(n − 1)) + Q(n − Q(n − 2)); for n = 3, 4, …; and Q(1) = Q(2) = 1. It exhibits a unique chaotic-order that might help develop approximate models of highly nonlinear phenomena. We explore this possibility and show how to modify a segment of the Q-sequence so that the modified segment becomes an approximate model of surface roughness (a highly non-linear phenomena that results from the material removal processes (e.g., turning, milling, grinding, and so on). The Q-sequence-based models of surface roughness can be used to recreate the surface heights whenever necessary. As such, it is a helpful means for developing simulation systems for virtual manufacturing.

Cite

CITATION STYLE

APA

Ullah, A. M. M. (2017). Surface Roughness Modeling Using Q-Sequence. Mathematical and Computational Applications, 22(2), 33. https://doi.org/10.3390/mca22020033

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free