Integration of motion and form cues for the perception of self-motion in the human brain

7Citations
Citations of this article
37Readers
Mendeley users who have this article in their library.

Abstract

When moving around in the world, the human visual system uses both motion and form information to estimate the direction of self-motion (i.e., heading). However, little is known about cortical areas in charge of this task. This brain-imaging study addressed this question by using visual stimuli consisting of randomly distributed dot pairs oriented toward a locus on a screen (the form-defined focus of expansion [FoE]) but moved away from a different locus (the motion-defined FoE) to simulate observer translation. We first fixed the motion-defined FoE location and shifted the form-defined FoE location. We then made the locations of the motion- and the form-defined FoEs either congruent (at the same location in the display) or incongruent (on the opposite sides of the display). The motion- or the form-defined FoE shift was the same in the two types of stimuli, but the perceived heading direction shifted for the congruent, but not for the incongruent stimuli. Participants (both sexes) made a task-irrelevant (contrast discrimination) judgment during scanning. Searchlight and ROI-based multivoxel pattern analysis revealed that early visual areas V1, V2, and V3 responded to either the motion- or the form-defined FoE shift. After V3, only the dorsal areas V3a and V3B/KO responded to such shifts. Furthermore, area V3B/KO shows a significantly higher decoding accuracy for the congruent than the incongruent stimuli. Our results provide direct evidence showing that area V3B/KO does not simply respond to motion and form cues but integrates these two cues for the perception of heading.

Cite

CITATION STYLE

APA

Kuai, S. G., Shan, Z. K. D., Chen, J., Xu, Z. X., Li, J. M., Field, D. T., & Li, L. (2020). Integration of motion and form cues for the perception of self-motion in the human brain. Journal of Neuroscience, 40(5), 1120–1132. https://doi.org/10.1523/JNEUROSCI.3225-18.2019

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free