Mice with miR-146a deficiency develop severe gouty arthritis via dysregulation of TRAF 6, IRAK 1 and NALP3 inflammasome

69Citations
Citations of this article
27Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: MicroRNAs (miRNAs) serve as important regulators of inflammatory and immune responses and are implicated in several immune disorders including gouty arthritis. The expression of miR-146a is upregulated in the peripheral blood mononuclear cells of patients with inter-critical gout when compared to normouricemic and hyperuricemic controls and those patients with acute gout flares. However, the role of miR-146a in the development of gout remains unknown. Here, we used miR-146a knockout (KO) mice to test miR-146a function in a monosodium urate (MSU)-induced gouty arthritis model. Methods: The footpad or ankle joint of miR-146a KO and wild-type (WT) mice were injected with an MSU suspension to induce acute gouty arthritis. Bone marrow-derived macrophages (BMDMs) were stimulated with MSU and the gene expression of miR-146a; interleukin 1 beta (IL-1β); tumor necrosis factor-α (TNF-α); and the NACHT, LRR and PYD domains-containing protein 3 (NALP3) inflammasome was evaluated. TNF-α and IL-1β protein levels in BMDMs were assessed by fluorescence-activated cell sorting and western blot analyses. Gene and protein levels of TNF receptor-associated factor 6 (TRAF6) and IL-1 receptor-associated kinase (IRAK1), the targets of miR-146a, were also measured. Results: Significantly increased paw swelling and index and ankle joint swelling were observed in miR-146a KO mice compared to WT controls after MSU treatment. MiR-146a expression in BMDMs from WT mice was dramatically upregulated at 4 h following MSU stimulation. Additionally, the expression of IL-1β, TNF-α, and NALP3 was higher in BMDMs from miR-146a KO mice after exposure to MSU crystals compared to those from WT mice. Consistent with the observed gene expression, the IL-1β and TNF-α proteins were upregulated in miR-146a KO mice. Additionally quantitative RT-PCR and western blot demonstrated that TRAF6 and IRAK1 were dramatically upregulated in BMDMs from miR-146 KO mice compared to those from WT mice. Conclusions: Collectively, these observations suggest that miR-146a provides negative feedback regulation of gouty arthritis development and lack of miR-146a enhances gouty arthritis via upregulation of TRAK6, IRAK-1, and the NALP3 inflammasome function.

Cite

CITATION STYLE

APA

Zhang, Q. B., Qing, Y. F., Yin, C. C., Zhou, L., Liu, X. shuang, Mi, Q. S., & Zhou, J. G. (2018). Mice with miR-146a deficiency develop severe gouty arthritis via dysregulation of TRAF 6, IRAK 1 and NALP3 inflammasome. Arthritis Research and Therapy, 20(1). https://doi.org/10.1186/s13075-018-1546-7

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free