Nano-hybrid plasmonic photocatalyst for hydrogen production at 20% efficiency

37Citations
Citations of this article
55Readers
Mendeley users who have this article in their library.

Abstract

The efficient conversion of light energy into chemical energy is key for sustainable human development. Several photocatalytic systems based on photovoltaic electrolysis have been used to produce hydrogen via water reduction. However, in such devices, light harvesting and proton reduction are carried separately, showing quantum efficiency of about 10-12%. Here, we report a nano-hybrid photocatalytic assembly that enables concomitant reductive hydrogen production and pollutant oxidation with solar-To-fuel efficiencies up to 20%. The modular architecture of this plasmonic material allows the fine-Tuning of its photocatalytic properties by simple manipulation of a reduced number of basic components.

Cite

CITATION STYLE

APA

Pavliuk, M. V., Fernandes, A. B., Abdellah, M., Fernandes, D. L. A., Machado, C. O., Rocha, I., … Sá, J. (2017). Nano-hybrid plasmonic photocatalyst for hydrogen production at 20% efficiency. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-09261-7

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free