Biocontrol of potato common scab is associated with high Pseudomonas fluorescens LBUM223 populations and phenazine-1-carboxylic acid biosynthetic transcript accumulation in the potato geocaulosphere

35Citations
Citations of this article
32Readers
Mendeley users who have this article in their library.

Abstract

Pseudomonads are often used as biocontrol agents because they display a broad range of mechanisms to control diseases. Common scab of potato, caused by Streptomyces scabies, was previously reported to be controlled by Pseudomonas fluorescens LBUM223 through phenazine-1-carboxylic acid (PCA) production. In this study, we aimed at characterizing the population dynamics of LBUM223 and the expression of phzC, a key gene involved in the biosynthesis of PCA, in the rhizosphere and geocaulosphere of potato plants grown under controlled and field conditions. Results obtained from controlled experiments showed that soil populations of LBUM223 significantly declined over a 15-week period. However, at week 15, the presence of S. scabies in the geocaulosphere was associated with significantly higher populations of LBUM223 than when the pathogen was absent. It also led to the detection of significantly higher phzC gene transcript numbers. Under field conditions, soil populations of LBUM223 followed a similar decline in time when a single inoculation was applied in spring but remained stable when reinoculated biweekly, which also led to greater phzC gene transcripts accumulation. Taken together, our findings suggest that LBUM223 must colonize the potato geocaulosphere at high levels (107 bacteria/g of soil) in order to achieve biocontrol of common scab through increased PCA production.

Cite

CITATION STYLE

APA

Arseneault, T., Goyer, C., & Filion, M. (2016). Biocontrol of potato common scab is associated with high Pseudomonas fluorescens LBUM223 populations and phenazine-1-carboxylic acid biosynthetic transcript accumulation in the potato geocaulosphere. Phytopathology, 106(9), 963–970. https://doi.org/10.1094/PHYTO-01-16-0019-R

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free