Employing lidar to detail vegetation canopy architecture for prediction of aeolian transport

24Citations
Citations of this article
58Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The diverse and fundamental effects that aeolian processes have on the biosphere and geosphere are commonly generated by horizontal sediment transport at the land surface. However, predicting horizontal sediment transport depends on vegetation architecture, which is difficult to quantify in a rapid but accurate manner. We demonstrate an approach to measure vegetation canopy architecture at high resolution using lidar along a gradient of dryland sites ranging from 2% to 73% woody plant canopy cover. Lidar-derived canopy height, distance (gaps) between vegetation elements (e.g., trunks, limbs, leaves), and the distribution of gaps scaled by vegetation height were correlated with canopy cover and highlight potentially improved horizontal dust flux estimation than with cover alone. Employing lidar to estimate detailed vegetation canopy architecture offers promise for improved predictions of horizontal sediment transport across heterogeneous plant assemblages. Key Points Aeolian processes in the bio and geosphere are driven by horizontal dust fluxPredicting dust flux depends on detailed vegetation architecture measurementsAccurate and rapid lidar measurements of vegetation enable dust flux estimation ©2013. American Geophysical Union. All Rights Reserved.

Author supplied keywords

Cite

CITATION STYLE

APA

Sankey, J. B., Law, D. J., Breshears, D. D., Munson, S. M., & Webb, R. H. (2013). Employing lidar to detail vegetation canopy architecture for prediction of aeolian transport. Geophysical Research Letters, 40(9), 1724–1728. https://doi.org/10.1002/grl.50356

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free