Fast and accurate learned multiresolution dynamical downscaling for precipitation

42Citations
Citations of this article
56Readers
Mendeley users who have this article in their library.
Get full text

Abstract

This study develops a neural-network-based approach for emulating high-resolution modeled precipitation data with comparable statistical properties but at greatly reduced computational cost. The key idea is to use combination of low- and high-resolution simulations (that differ not only in spatial resolution but also in geospatial patterns) to train a neural network to map from the former to the latter. Specifically, we define two types of CNNs, one that stacks variables directly and one that encodes each variable before stacking, and we train each CNN type both with a conventional loss function, such as mean square error (MSE), and with a conditional generative adversarial network (CGAN), for a total of four CNN variants. We compare the four new CNN-derived high-resolution precipitation results with precipitation generated from original high-resolution simulations, a bilinear interpolater and the state-of-the-art CNN-based super-resolution (SR) technique. Results show that the SR technique produces results similar to those of the bilinear interpolator with smoother spatial and temporal distributions and smaller data variabilities and extremes than the original high-resolution simulations. While the new CNNs trained by MSE generate better results over some regions than the interpolator and SR technique do, their predictions are still biased from the original high-resolution simulations. The CNNs trained by CGAN generate more realistic and physically reasonable results, better capturing not only data variability in time and space but also extremes such as intense and long-lasting storms. The new proposed CNN-based downscaling approach can downscale precipitation from 50 to 12gkm in 14gmin for 30 years once the network is trained (training takes 4gh using 1 GPU), while the conventional dynamical downscaling would take 1gmonth using 600 CPU cores to generate simulations at the resolution of 12gkm over the contiguous United States.

Cite

CITATION STYLE

APA

Wang, J., Liu, Z., Foster, I., Chang, W., Kettimuthu, R., & Kotamarthi, V. R. (2021). Fast and accurate learned multiresolution dynamical downscaling for precipitation. Geoscientific Model Development, 14(10), 6355–6372. https://doi.org/10.5194/gmd-14-6355-2021

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free