Material Properties for the Interiors of Massive Giant Planets and Brown Dwarfs

  • Becker A
  • Bethkenhagen M
  • Kellermann C
  • et al.
22Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

Abstract

We present thermodynamic material and transport properties for the extreme conditions prevalent in the interiors of massive giant planets and brown dwarfs. They are obtained from extensive ab initio simulations of hydrogen–helium mixtures along the isentropes of three representative objects. In particular, we determine the heat capacities, the thermal expansion coefficient, the isothermal compressibility, and the sound velocity. Important transport properties such as the electrical and thermal conductivity, opacity, and shear viscosity are also calculated. Further results for associated quantities, including magnetic and thermal diffusivity, kinematic shear viscosity, as well as the static Love number k 2 and the equidistance, are presented. In comparison to Jupiter-mass planets, the behavior inside massive giant planets and brown dwarfs is stronger dominated by degenerate matter. We discuss the implications on possible dynamics and magnetic fields of those massive objects. The consistent data set compiled here may serve as a starting point to obtain material and transport properties for other substellar H–He objects with masses above one Jovian mass and finally may be used as input for dynamo simulations.

Cite

CITATION STYLE

APA

Becker, A., Bethkenhagen, M., Kellermann, C., Wicht, J., & Redmer, R. (2018). Material Properties for the Interiors of Massive Giant Planets and Brown Dwarfs. The Astronomical Journal, 156(4), 149. https://doi.org/10.3847/1538-3881/aad735

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free