Taxonomic and functional dynamics during chytrid epidemics in an aquatic ecosystem

0Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Fungal parasitism is common in plankton communities and plays a crucial role in the ecosystem by balancing nutrient cycling in the food web. Previous studies of aquatic ecosystems revealed that zoosporic chytrid epidemics represent an important driving factor in phytoplankton seasonal successions. In this study, host–parasite dynamics in Lake Pavin (France) were investigated during the spring diatom bloom while following chytrid epidemics using next generation sequencing (NGS). Metabarcoding analyses were applied to study changes in the eukaryotic microbial community throughout diatom bloom–chytrid epidemics. Relative read abundances of metabarcoding data revealed potential “beneficiaries” and “victims” during the studied period. Subsequently, metatranscriptomic analyses on samples before and during the chytrid epidemic unveiled the active part of the community and functional/metabolic dynamics in association with the progress of chytrid infection. Diatom functions involving lipases, transporters, histones, vacuolar systems, the proteasome, proteases and DNA/RNA polymerases were more abundant during the diatom bloom. Chytrid functions related to a parasitic lifestyle including invasion, colonization and stress tolerance were up-regulated during the chytrid epidemic. In addition, functions related to the degradation/metabolism of proteins, lipids and chitin were in higher proportion in the community during the epidemic event. Results of NGS and bioinformatics analyses offered a panorama of dynamic biodiversity and biological functioning of the community.

Cite

CITATION STYLE

APA

Li, L. L., Delgado-Viscogliosi, P., Gerphagnon, M., Viscogliosi, E., Christaki, U., Sime-Ngando, T., & Monchy, S. (2022). Taxonomic and functional dynamics during chytrid epidemics in an aquatic ecosystem. Molecular Ecology, 31(21), 5618–5634. https://doi.org/10.1111/mec.16675

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free