Recently, graph neural network (GNN) approaches have received huge interests in recommendation tasks due to their ability of learning more effective user and item representations. However, existing GNN-based recommendation models cannot support real-time recommendation where the model keeps its freshness by continuously training the streaming data that users produced, leading to negative impact on recommendation performance. To fully support graph-enhanced large-scale recommendation in real-time scenarios, a deep graph learning system is required to dynamically store the streaming data as a graph structure and enable the development of any GNN model incorporated with the capabilities of real-time training and online inference. However, such requirements rule out existing deep graph learning solutions. In this paper, we propose a new deep graph learning system called PlatoGL, where (1) an effective block-based graph storage is designed with non-trivial insertion/deletion mechanism for updating the graph topology in-milliseconds, (2) a non-trivial multi-blocks neighbour sampling method is proposed for efficient graph query, and (3) a cache technique is exploited to improve the storage stability. We have deployed PlatoGL in Wechat, and leveraged its capability in various content recommendation scenarios including live-streaming, article and micro-video. Comprehensive experiments on both deployment performance and benchmark performance∼(w.r.t. its key features) demonstrate its effectiveness and scalability. One real-time GNN-based model, developed with PlatoGL, now serves the major online traffic in WeChat live-streaming recommendation scenario.
CITATION STYLE
Lin, D., Sun, S., Ding, J., Ke, X., Gu, H., Huang, X., … Chen, C. (2022). PlatoGL: Effective and Scalable Deep Graph Learning System for Graph-enhanced Real-Time Recommendation. In International Conference on Information and Knowledge Management, Proceedings (pp. 3302–3311). Association for Computing Machinery. https://doi.org/10.1145/3511808.3557084
Mendeley helps you to discover research relevant for your work.