Repetitive passive movement (PM) affects corticospinal excitability; however, it is unknown whether a duty cycle which repeats movement and rest, or subjects’ conscious attention to movements, affects corticospinal excitability. We aimed to clarify the effect of the presence or absence of a duty cycle and subjects’ attention on corticospinal excitability. Three experiments were conducted. In Experiment 1, PM of the right index finger was performed for 10 min. Three conditions were used: (1) continuous PM (cPM) at a rate of 40°/s; (2) intermittent PM (iPM) with a duty cycle at 40°/s; and (3) iPM at 100°/s. In conditions 1 and 3, motor evoked potential (MEP) amplitude was significantly reduced. In Experiment 2, PM was performed for 30 min: condition 1 comprised cPM at a rate of 40°/s and Condition 2 comprised iPM at 40°/s. MEP amplitude significantly decreased in both conditions. In Experiment 3, PM was performed for 10 min: condition 1 comprised paying attention to the moving finger during iPM and Condition 2 was similar to Condition 1 but while counting images on a monitor without looking at the movement finger, and Condition 3 comprised counting images on a monitor without performing PM. MEP amplitude significantly increased only under Condition 1. Thus, afferent input from movements above a certain threshold may affect corticospinal excitability reduction. Furthermore, corticospinal excitability increases when paying attention to passive finger movement.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Tsuiki, S., Sasaki, R., Pham, M. V., Miyaguchi, S., Kojima, S., Saito, K., … Onishi, H. (2019). Repetitive passive movement modulates corticospinal excitability: Effect of movement and rest cycles and subject attention. Frontiers in Behavioral Neuroscience, 13. https://doi.org/10.3389/fnbeh.2019.00038