In this study, we monitor pavement and land subsidence in Tabriz city in NW Iran using X-band synthetic aperture radar (SAR) sensor of Cosmo-SkyMed (CSK) satellites (2017–2018). Fifteen CSK images with a revisit interval of ~30 days have been used. Because of traffic jams, usually cars on streets do not allow pure backscattering measurements of pavements. Thus, the major paved areas (e.g., streets, etc.) of the city are extracted from a minimum-based stacking model of high resolution (HR) SAR images. The technique can be used profitably to reduce the negative impacts of the presence of traffic jams and estimate the possible quality of pavement in the HR SAR images in which the results can be compared by in-situ road roughness measurements. In addition, a time series small baseline subset (SBAS) interferometric SAR (InSAR) analysis is applied for the acquired HR CSK images. The SBAS InSAR results show land subsidence in some parts of the city. The mean rate of line-of-sight (LOS) subsidence is 20 mm/year in district two of the city, which was confirmed by field surveying and mean vertical velocity of Sentinel-1 dataset. The SBAS InSAR results also show that 1.4 km2 of buildings and 65 km of pavement are at an immediate risk of land subsidence.
CITATION STYLE
Karimzadeh, S., & Matsuoka, M. (2020). Remote sensing x-band sar data for land subsidence and pavement monitoring. Sensors (Switzerland), 20(17), 1–21. https://doi.org/10.3390/s20174751
Mendeley helps you to discover research relevant for your work.