The aim of this paper is an empirical estimation of the fundamental period of reinforced concrete buildings and its variation due to structural and non-structural damage. The 2009 L'Aquila earthquake has highlighted the mismatch between experimental data and code provisions value not only for undamaged buildings but also for the damaged ones. The 6 April 2009 L'Aquila earthquake provided the first opportunity in Italy to estimate the fundamental period of reinforced concrete (RC) buildings after a strong seismic sequence. A total of 68 buildings with different characteristics, such as age, height and damage level, have been investigated by performing ambient vibration measurements that provided their fundamental translational period. Four different damage levels were considered according with the definitions by EMS 98 (European Macroseismic Scale), trying to regroup the estimated fundamental periods versus building heights according to damage. The fundamental period of RC buildings estimated for low damage level is equal to the previous relationship obtained in Italy and Europe for undamaged buildings, well below code provisions. When damage levels are higher, the fundamental periods increase, but again with values much lower than those provided by codes. Finally, the authors suggest a possible update of the code formula for the simplified estimation of the fundamental period of vibration for existing RC buildings, taking into account also the inelastic behaviour.
CITATION STYLE
Ditommaso, R., Vona, M., Gallipoli, M. R., & Mucciarelli, M. (2013). Evaluation and considerations about fundamental periods of damaged reinforced concrete buildings. Natural Hazards and Earth System Sciences, 13(7), 1903–1912. https://doi.org/10.5194/nhess-13-1903-2013
Mendeley helps you to discover research relevant for your work.