Continuous removal of small nonviable suspended mammalian cells and debris from bioreactors using inertial microfluidics

41Citations
Citations of this article
86Readers
Mendeley users who have this article in their library.

Abstract

Removing nonviable cells from a cell suspension is crucial in biotechnology and biomanufacturing. Label-free microfluidic cell separation devices based on dielectrophoresis, acoustophoresis, and deterministic lateral displacement are used to remove nonviable cells. However, their volumetric throughputs and test cell concentrations are generally too low to be useful in typical bioreactors in biomanufacturing. In this study, we demonstrate the efficient removal of small (<10 μm) nonviable cells from bioreactors while maintaining viable cells using inertial microfluidic cell sorting devices and characterize their performance. Despite the size overlap between viable and nonviable cell populations, the devices demonstrated 3.5-28.0% dead cell removal efficiency with 88.3-83.6% removal purity as well as 97.8-99.8% live cell retention efficiency at 4 million cells per mL with 80% viability. Cascaded and parallel configurations increased the cell concentration capacity (10 million cells per mL) and volumetric throughput (6-8 mL min-1). The system can be used for the removal of small nonviable cells from a cell suspension during continuous perfusion cell culture operations.

Cite

CITATION STYLE

APA

Kwon, T., Yao, R., Hamel, J. F. P., & Han, J. (2018). Continuous removal of small nonviable suspended mammalian cells and debris from bioreactors using inertial microfluidics. Lab on a Chip, 18(18), 2826–2837. https://doi.org/10.1039/c8lc00250a

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free