Background: Plants have served either as a natural templates for the development of new chemicals or a phytomedicine since antiquity. Therefore, the present study was aimed to appraise the polarity directed antioxidant, cytotoxic, protein kinase inhibitory, antileishmanial and glucose modulatory attributes of a Himalayan medicinal plant- Quercus dilatata. Methods: Total phenolic and flavonoid contents were determined colorimetrically and various polyphenols were identified by RP-HPLC analysis. Brine shrimp lethality, SRB and MTT assays were employed to test cytotoxicity against Artemia salina and human cancer cell lines respectively. Antileishmanial activity was determined using standard MTT protocol. Glucose modulation was assessed by α-amylase inhibition assay while disc diffusion assay was used to establish protein kinase inhibitory and antifungal spectrum. Results: Among 14 extracts of aerial parts, distilled water-acetone extract demonstrated maximum extract recovery (10.52% w/w), phenolic content (21.37 ± 0.21 μg GAE/mg dry weight (DW)), total antioxidant capacity (4.81 ± 0.98 μg AAE/mg DW) and reducing power potential (20.03 ± 2.4 μg/mg DW). On the other hand, Distilled water extract proficiently extracted flavonoid content (4.78 ± 0.51 μg QE/mg DW). RP-HPLC analysis revealed the presence of significant amounts of phenolic metabolites (0.049 to 15.336 μg/mg extract) including, pyrocatechol, gallic acid, catechin, chlorogenic acid, p-coumaric acid, ferulic acid and quercetin. Highest free radical scavenging capacity was found in Methanol-Ethyl acetate extract (IC50 8.1 ± 0.5 μg/ml). In the brine shrimp toxicity assay, most of the tested extracts (57%) showed high cytotoxicity. Among these, Chloroform-Methanol extract had highest cytotoxicity against THP-1 cell line (IC50 3.88 ± 0.53 μg/ml). About 50% of the extracts were found to be moderately antiproliferative against Hep G2 cell line. Methanol extract exhibited considerable protein kinase inhibitory activity against Streptomyces 85E strain (28 ± 0.35 mm bald phenotype at 100 μg/disc; MIC = 12.5 μg/ disc) while, Chloroform extract displayed maximum antidiabetic activity (α-amylase inhibition of 21.61 ± 1.53% at 200 μg/ml concentration). The highest antileishmanial potential was found in Ethyl acetate-Acetone extract (12.91 ± 0.02% at 100 μg/ml concentration), while, Q. dilatata extracts also showed a moderate antifungal activity. Conclusion: This study proposes that multiple-solvent system is a crucial variable to elucidate pharmacological potential of Q. dilatata and the results of the present findings prospects its potential as a resource for the discovery of novel anticancer, antidiabetic, antileishmanial and antioxidant agents.
CITATION STYLE
Ahmed, M., Fatima, H., Qasim, M., Gul, B., & Ihsan-ul-Haq. (2017). Polarity directed optimization of phytochemical and in vitro biological potential of an indigenous folklore: Quercus dilatata Lindl. ex Royle. BMC Complementary and Alternative Medicine, 17(1). https://doi.org/10.1186/s12906-017-1894-x
Mendeley helps you to discover research relevant for your work.