Fabrication and Mechanical Properties of High-Durability Polypropylene Composites via Reutilization of SiO2 In-Situ-Synthesized Waste Printed Circuit Board Powder

5Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

This paper focuses on the characterization of the physico-chemical properties, surface modification, residual copper content and in situ hybrid inorganic particle modification of polypropylene (PP) composites reinforced by waste printed circuit board powder (WPCBP). A series of WPCBP/SiO2 hybrids (TSW) were prepared by a sol–gel method at different pH values. Characterization results revealed the in situ generation of SiO2 on the surface of WPCBP, and showed that with an increase in pH value, the size of SiO2 particles increased gradually and the copper content decreased in the TSW powder. The mechanical properties, oxidation induction time (OIT) and thermal properties of PP composites were improved by reinforcement with TSW, which might be ascribed to the formation of serrated interfaces. This work not only develops a powerful method to enhance the properties of PP/WPCBP composites, but also provides an environmentally sustainable approach to the high-added-value reutilization of WPCBP.

Cite

CITATION STYLE

APA

Tian, S., Li, B., He, H., Liu, X., Wen, X., & Zhang, Z. (2022). Fabrication and Mechanical Properties of High-Durability Polypropylene Composites via Reutilization of SiO2 In-Situ-Synthesized Waste Printed Circuit Board Powder. Polymers, 14(5). https://doi.org/10.3390/polym14051045

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free