Hoax merupakan informasi yang dibuat oleh orang tidak bertanggung jawab dengan tujuan membuat orang lain mempercayai sesuatu yang tidak benar. Berita hoax yang paling mudah beredar adalah hoax tentang kesehatan. Di Indonesia sendiri semenjak diberitakan masuknya virus Covid-19, berita hoax tentang hal itu terus meningkat berdasarkan data yang dirilis oleh Kominfo periode Januari-Agustus 2020. Agar terhindar dari berita hoax ialah dengan lebih teliti membaca judul berita pada situs yang terpercaya seperti Kompas. Karena itu penelitian ini akan mengembangkan dan menganalisis model klasifikasi berita hoax Covid-19 dengan menerapkan algoritma Support Vector Machine (SVM) dengan metodologi Knowledge Discovery in Databases (KDD). Studi kasus penelitian ini dibagi dalam 2 kategori yaitu berita hoax yang didapat dari situs Trunbackhoax & Hoax buster sedangkan berita bukan hoax diambil dari situs berita Kompas. Hasil penelitian menyatakan bahwa Algoritma Support Vector Machine (SVM) dengan kernel linear memiliki hasil prediksi yang bagus pada skenario 3 (80:20) karena model sanggup dalam mengklasifikasikan berita hoax dan bukan hoax Covid-19. Akurasi yang didapat pada skenario 3 juga memiliki nilai akurasi tertinggi sebesar 97,06%. Sedangkan pada kernel RBF memiliki akurasi terendah pada skenario 4 (90:10) yaitu 90.46% dan model kurang bagus dalam mengklasifikasikan berita hoax maupun bukan hoax Covid-19.
CITATION STYLE
Ropikoh, I. A., Abdulhakim, R., Enri, U., & Sulistiyowati, N. (2021). Penerapan Algoritma Support Vector Machine (SVM) untuk Klasifikasi Berita Hoax Covid-19. Journal of Applied Informatics and Computing, 5(1), 64–73. https://doi.org/10.30871/jaic.v5i1.3167
Mendeley helps you to discover research relevant for your work.