The Protein-Protein Interaction Network Reveals a Novel Role of the Signal Transduction Protein PII in the Control of c-di-GMP Homeostasis in Azospirillum brasilense

  • Gerhardt E
  • Parize E
  • Gravina F
  • et al.
11Citations
Citations of this article
34Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The PII proteins sense and integrate important metabolic signals which reflect the cellular nutrition and energy status. Such extraordinary ability was capitalized by nature in such a way that the various PII proteins regulate different facets of metabolism by controlling the activity of a range of target proteins by protein-protein interactions. Here, we determined the PII protein interaction network in the plant growth-promoting nitrogen-fixing bacterium Azospirillum brasilense . The interactome data along with metabolome analysis suggest that PII functions as a master metabolic regulator hub. We provide evidence that PII proteins act to regulate c-di-GMP levels in vivo and cell motility and adherence behaviors. The PII family comprises a group of widely distributed signal transduction proteins ubiquitous in prokaryotes and in the chloroplasts of plants. PII proteins sense the levels of key metabolites ATP, ADP, and 2-oxoglutarate, which affect the PII protein structure and thereby the ability of PII to interact with a range of target proteins. Here, we performed multiple ligand fishing assays with the PII protein orthologue GlnZ from the plant growth-promoting nitrogen-fixing bacterium Azospirillum brasilense to identify 37 proteins that are likely to be part of the PII protein-protein interaction network. Among the PII targets identified were enzymes related to nitrogen and fatty acid metabolism, signaling, coenzyme synthesis, RNA catabolism, and transcription. Direct binary PII-target complex was confirmed for 15 protein complexes using pulldown assays with recombinant proteins. Untargeted metabolome analysis showed that PII is required for proper homeostasis of important metabolites. Two enzymes involved in c-di-GMP metabolism were among the identified PII targets. A PII-deficient strain showed reduced c-di-GMP levels and altered aerotaxis and flocculation behavior. These data support that PII acts as a major metabolic hub controlling important enzymes and the homeostasis of key metabolites such as c-di-GMP in response to the prevailing nutritional status. IMPORTANCE The PII proteins sense and integrate important metabolic signals which reflect the cellular nutrition and energy status. Such extraordinary ability was capitalized by nature in such a way that the various PII proteins regulate different facets of metabolism by controlling the activity of a range of target proteins by protein-protein interactions. Here, we determined the PII protein interaction network in the plant growth-promoting nitrogen-fixing bacterium Azospirillum brasilense . The interactome data along with metabolome analysis suggest that PII functions as a master metabolic regulator hub. We provide evidence that PII proteins act to regulate c-di-GMP levels in vivo and cell motility and adherence behaviors.

Cite

CITATION STYLE

APA

Gerhardt, E. C. M., Parize, E., Gravina, F., Pontes, F. L. D., Santos, A. R. S., Araújo, G. A. T., … Huergo, L. F. (2020). The Protein-Protein Interaction Network Reveals a Novel Role of the Signal Transduction Protein PII in the Control of c-di-GMP Homeostasis in Azospirillum brasilense. MSystems, 5(6). https://doi.org/10.1128/msystems.00817-20

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free