Lifetime exposure to trihalomethanes (THM) has been associated with increased risk of bladder cancer. We explored methods of analyzing bladder cancer risk associated with 4 THM (chloroform, bromodichloromethane, dibromochloromethane, and bromoform) as surrogates for disinfection by-product (DBP) mixtures in a case-control study in Spain (1998-2001). Lifetime average concentrations of THM in the households of 686 incident bladder cancer cases and 750 matched hospital-based controls were calculated. Several exposure metrics were modeled through conditional logistic regression, including the following analyses: total THM (μg/L), cytotoxicity-weighted sum of total THM (pmol/L), 4 THM in separate models, 4 THM in 1 model, chloroform and the sum of brominated THM in 1 model, and a principal-components analysis. THM composition, concentrations, and correlations varied between areas. The model for total THM was stable and showed increasing dose-response trends. Models for separate THM provided unstable estimates and inconsistent dose-response relationships. Risk estimation for specific THM is hampered by the varying composition of the mixture, correlation between species, and imprecision of historical estimates. Total THM (μg/L) provided a proxy measure of DBPs that yielded the strongest dose-response relationship with bladder cancer risk. A variety of metrics and statistical approaches should be used to evaluate this association in other settings. © 2013 The Author.
CITATION STYLE
Salas, L. A., Cantor, K. P., Tardon, A., Serra, C., Carrato, A., Garcia-Closas, R., … Villanueva, C. M. (2013). Biological and statistical approaches for modeling exposure to specific trihalomethanes and bladder cancer risk. American Journal of Epidemiology, 178(4), 652–660. https://doi.org/10.1093/aje/kwt009
Mendeley helps you to discover research relevant for your work.