High Quality Inkjet Printed-Emissive Nanocrystalline Perovskite CsPbBr3 Layers for Color Conversion Layer and LEDs Applications

26Citations
Citations of this article
45Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Metal halide perovskites (MHPs) have shown outstanding optical emissive properties and can be employed in several optoelectronics devices. In contrast with materials of well-established technologies, which are prone to degradation or require expensive processes, MHPs can be obtained by solution processing methods and increase stability. Inkjet printing is proposed as an industrial friendly technique to deposit MHPs. The inks have been developed from colloidal CsPbBr3 nanocrystals and printing procedures that allow the deposition of thin layers with intense green emission. High emissive printed layers are assured by carrying out thermal annealing in vacuum oven, which is demonstrated to promote compact layers with low roughness, corroborated by SEM and AFM. XRD measurements show CsPbBr3 crystalline layers with cubic symmetry and XPS provides insight into the stoichiometric composition and local bonding. Optical properties of inkjet-printed CsPbBr3 films have been analyzed by UV–vis absorbance and photoluminescence (PL), to extract the bandgap energy and photoluminescence quantum yield (PLQY). CsPbBr3 printed layers emit at 524 nm with a narrow emission (FWHM ≈ 15 nm), exhibiting a PLQY up to 20%. These results enabled the large-scale fabrication by inkjet printing of CsPbBr3 color conversion layers (CCLs) and pave the way for flexible LEDs.

Cite

CITATION STYLE

APA

Vescio, G., Frieiro, J. L., Gualdrón-Reyes, A. F., Hernández, S., Mora-Seró, I., Garrido, B., & Cirera, A. (2022). High Quality Inkjet Printed-Emissive Nanocrystalline Perovskite CsPbBr3 Layers for Color Conversion Layer and LEDs Applications. Advanced Materials Technologies, 7(7). https://doi.org/10.1002/admt.202101525

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free