The existing insect recognition methods mostly segment the target region by traditional classification technology, failing to achieve a high accuracy in complex background. To solve the problem, this paper introduces the morphology-based edgeless active contour strategy to segment insects in complex background. The strategy integrates the morphological operation of gray image, and detects insect contours by narrow-band fast method. To enhance the background diversity of new samples, the authors improved the synthetic minority over-sampling technique (SMOTE) algorithm into a variable weight edge enhancement algorithm. Based on the SMOTE algorithm, the proposed algorithm increases the weight of the edge area as adjacent images are superimposed into a new image, making the background of the new image more complex. Finally, the proposed method was coupled with DenseNet-121 to recognize insects in images with complex background. The results show that the accuracy of the network was nearly 10% higher on the balanced set than on the unbalanced set, suggesting that our method is feasible and accurate.
CITATION STYLE
Zhang, X., & Chen, G. (2020). An automatic insect recognition algorithm in complex background based on convolution neural network. Traitement Du Signal, 37(5), 793–798. https://doi.org/10.18280/ts.370511
Mendeley helps you to discover research relevant for your work.