Crude glycerol (CG) is a major byproduct of biodiesel production. Most of it cannot be utilized due to major impurities. The CG generally contains alkalis, which generate the residual salts in a series of its purification stages. This study aims to obtain the optimum process conditions and acid molar ratio to produce a higher potassium salt yield while improving the purity of glycerol by a simple acidification procedure. The CG was obtained from the transesterification of palm oil using a catalyst based on potassium carbonate. A phosphoric acid (85%) is utilized at various molar ratios and the process temperature is 60-80 °C. The strong acid was slowly added to the CG and heated for 30 minutes with a mixing speed of 250 rpm. The optimum acidification process occurred at a temperature of 70 °C with a molar crude glycerol ratio to phosphoric acid of 1 : 0.5. The glycerol purity was increased from 43.3% to 67.63% (w/w). It effectively obtains a potassium phosphate salt with a yield of 6.78%. The functional group infrared (IR) and X-ray fluorescence (XRF) spectra identified the salt residue as potassium dihydrogen phosphate (KH2PO4). This is composed predominantly of potassium oxide (K2O) and phosphorus pentoxide (P2O5), 50% and 47.9%, respectively.
CITATION STYLE
Komariah, L. N., Arita, S., Cundari, L., & Afrah, B. D. (2024). Recovery of potassium salt by acidification of crude glycerol derived from biodiesel production. RSC Advances, 14(9), 6112–6120. https://doi.org/10.1039/d3ra08264d
Mendeley helps you to discover research relevant for your work.