Development of a Model for Genomic Prediction of Multiple Traits in Common Bean Germplasm, Based on Population Structure

3Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

Due to insufficient identification and in-depth investigation of existing common bean germplasm resources, it is difficult for breeders to utilize these valuable genetic resources. This situation limits the breeding and industrial development of the common bean (Phaseolus vulgaris L.) in China. Genomic prediction (GP) is a breeding method that uses whole-genome molecular markers to calculate the genomic estimated breeding value (GEBV) of candidate materials and select breeding materials. This study aimed to use genomic prediction to evaluate 15 traits in a collection of 628 common bean lines (including 484 landraces and 144 breeding lines) to determine a common bean GP model. The GP model constructed by landraces showed a moderate to high predictive ability (ranging from 0.59–0.88). Using all landraces as a training set, the predictive ability of the GP model for most traits was higher than that using the landraces from each of two subgene pools, respectively. Randomly selecting breeding lines as additional training sets together with landrace training sets to predict the remaining breeding lines resulted in a higher predictive ability based on principal components analysis. This study constructed a widely applicable GP model of the common bean based on the population structure, and encouraged the development of GP models to quickly aggregate excellent traits and accelerate utilization of germplasm resources.

Cite

CITATION STYLE

APA

Shao, J., Hao, Y., Wang, L., Xie, Y., Zhang, H., Bai, J., … Fu, J. (2022). Development of a Model for Genomic Prediction of Multiple Traits in Common Bean Germplasm, Based on Population Structure. Plants, 11(10). https://doi.org/10.3390/plants11101298

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free