The Impact of Mutations in the HvCPD and HvBRI1 Genes on the Physicochemical Properties of the Membranes from Barley Acclimated to Low/High Temperatures

9Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

Abstract

(1) Background: The study characterized barley mutants with brassinosteroid (BR) biosynthesis and signaling disturbances in terms of the physicochemical/structural properties of membranes to enrich the knowledge about the role of brassinosteroids for lipid metabolism and membrane functioning. (2) Methods: The Langmuir method was used to investigate the properties of the physicochemical membranes. Langmuir monolayers were formed from the lipid fractions isolated from the plants growing at 20 °C and then acclimated at 5 °C or 27 °C. The fatty acid composition of the lipids was estimated using gas chromatography. (3) Results: The BR-biosynthesis and BR-signaling mutants of barley were characterized by a temperature-dependent altered molar percentage of fatty acids (from 14:0 to 20:1) in their galactolipid and phospholipid fractions in comparison to wild-type (WT). For example, the mutants had a lower molar percentage of 18:3 in the phospholipid (PL) fraction. The same regularity was observed at 5 °C. It resulted in altered physicochemical parameters of the membranes (Alim, πcoll, Cs-1). (4) Conclusions: BR may be involved in regulating fatty acid biosynthesis or their transport/incorporation into the cell membranes. Mutants had altered physicochemical parameters of their membranes, compared to the WT, which suggests that BR may have a multidirectional impact on the membrane-dependent physiological processes.

Cite

CITATION STYLE

APA

Rudolphi-Szydło, E., Sadura, I., Filek, M., Gruszka, D., & Janeczko, A. (2020). The Impact of Mutations in the HvCPD and HvBRI1 Genes on the Physicochemical Properties of the Membranes from Barley Acclimated to Low/High Temperatures. Cells, 9(5). https://doi.org/10.3390/cells9051125

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free