Eosinophil ETosis and DNA Traps: a New Look at Eosinophilic Inflammation

77Citations
Citations of this article
89Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The traditional paradigm of eosinophils as end-stage damaging cells has mainly relied on their release of cytotoxic proteins. Cytokine-induced cell survival and secretion of granular contents from tissue-dwelling eosinophil are thought to be important mechanisms for eosinophilic inflammatory disorders, although the occurrence of cytolysis and its products (i.e., free extracellular granules) has been observed in affected lesions. Recent evidence indicates that activated eosinophils can exhibit a non-apoptotic cell death pathway, namely extracellular trap cell death (ETosis) that mediates the eosinophil cytolytic degranulation. Here, we discuss the current concept of eosinophil ETosis which provides a new look at eosinophilic inflammation. Lessons from eosinophilic chronic rhinosinusitis revealed that ETosis-derived DNA traps, composed of stable web-like chromatin, contribute to the properties of highly viscous eosinophilic mucin and impairments in its clearance. Intact granules entrapped in DNA traps are causing long-lasting inflammation but also might have immunoregulatory roles. Eosinophils possess a way to have post-postmortem impacts on innate immunity, local immune response, sterile inflammation, and tissue damage.

Cite

CITATION STYLE

APA

Ueki, S., Tokunaga, T., Fujieda, S., Honda, K., Hirokawa, M., Spencer, L. A., & Weller, P. F. (2016, July 1). Eosinophil ETosis and DNA Traps: a New Look at Eosinophilic Inflammation. Current Allergy and Asthma Reports. Current Medicine Group LLC 1. https://doi.org/10.1007/s11882-016-0634-5

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free