Comparative Evaluation of Pseudomonas aeruginosa Adhesion to a Poly-(2-Methacryloyloxyethyl Phosphorylcholine)-Modified Silicone Hydrogel Contact Lens

4Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

Pseudomonas aeruginosa is the most common causative agent associated with microbial keratitis. During contact lens wear, pathogens may be introduced into the ocular environment, which might cause adverse events. Lehfilcon A is a recently developed contact lens with a water gradient surface composed of polymeric 2-methacryloyloxyethyl phosphorylcholine (MPC). MPC is re-ported to impart anti-biofouling properties onto modified substrates. Therefore, in this in vitro experimental study, we tested the capability of lehfilcon A to resist adhesion by P. aeruginosa. Quantitative bacterial adhesion assays using five strains of P. aeruginosa were conducted to compare the adherence properties of lehfilcon A to five currently marketed silicone hydrogel (SiHy) contact lenses (comfilcon A, fanfilcon A, senofilcon A, senofilcon C, and samfilcon A). Compared to lehfilcon A, we observed 26.7 ± 8.8 times (p = 0.0028) more P. aeruginosa binding to comfilcon A, 30.0 ± 10.8 times (p = 0.0038) more binding to fanfilcon A, 18.2 ± 6.2 times (p = 0.0034) more binding to senofilcon A, 13.6 ± 3.9 times (p = 0.0019) more binding to senofilcon C, and 29.5 ± 11.8 times (p = 0.0057) more binding to samfilcon A. These results demonstrate that, for various strains of P. aeruginosa, lehfilcon A reduces bacterial adhesion compared to other contact lens materials.

Cite

CITATION STYLE

APA

Harris, V., Pifer, R., Shannon, P., & Crary, M. (2023). Comparative Evaluation of Pseudomonas aeruginosa Adhesion to a Poly-(2-Methacryloyloxyethyl Phosphorylcholine)-Modified Silicone Hydrogel Contact Lens. Vision (Switzerland), 7(1). https://doi.org/10.3390/vision7010027

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free