A Comprehensive Review on Lane Marking Detection Using Deep Neural Networks

12Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.

Abstract

Lane marking recognition is one of the most crucial features for automotive vehicles as it is one of the most fundamental requirements of all the autonomy features of Advanced Driver Assistance Systems (ADAS). Researchers have recently made promising improvements in the application of Lane Marking Detection (LMD). This research article has taken the initiative to review lane marking detection, mainly using deep learning techniques. This paper initially discusses the introduction of lane marking detection approaches using deep neural networks and conventional techniques. Lane marking detection frameworks can be categorized into single-stage and two-stage architectures. This paper elaborates on the network’s architecture and the loss function for improving the performance based on the categories. The network’s architecture is divided into object detection, classification, and segmentation, and each is discussed, including their contributions and limitations. There is also a brief indication of the simplification and optimization of the network for simplifying the architecture. Additionally, comparative performance results with a visualization of the final output of five existing techniques is elaborated. Finally, this review is concluded by pointing to particular challenges in lane marking detection, such as generalization problems and computational complexity. There is also a brief future direction for solving the issues, for instance, efficient neural network, Meta, and unsupervised learning.

Cite

CITATION STYLE

APA

Mamun, A. A., Ping, E. P., Hossen, J., Tahabilder, A., & Jahan, B. (2022, October 1). A Comprehensive Review on Lane Marking Detection Using Deep Neural Networks. Sensors. MDPI. https://doi.org/10.3390/s22197682

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free